¥ YASKAWA

Application Note

Creating PLCopen Compliant Function Blocks in IEC 61131

Yaskawa America, Inc. — Drives & Motion Division ©2014 February 23, 2014 Page 1 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

[(oo [Tox 1o o IS 3
LT 1=] £ PSPPI 3
LT 1] o TS = U (= SRR 3
FUNCLON BIOCK MOUEIS ... et e e e e e e e e e e e eaaaeeeeenes 4
INPUE BERNAVIOK ... ettt e e e e e e e e ettt b e e e e e e e e e e eeenanann s 6
(@ 11110] 1 == = 1Y/ o U SEPPPPRPURR 6
Execute FUNCLION BIOCK MOELo o eaenes 7

TrIQOEr STAEIMENTS ...ttt e e e e e et e e e e e e e e e eenennn s 8

RETURN STAIEMENToeiieiee et e e e e e e e a e eaa s 9

Setting the TACHVE FIagoooo i e eeaanee 10

LT E= 1 2= 11 o] ISP 11

Y= U] T o To [= 0T |V 13

MOLION BIOCKS.cceiiiceee e e e e e e e e e e 14

EFTOr PrOCESSING ...ttt e e e e e e e et e e e e e e e e e eeennnn s 16

CommandADBOrted OULPULoueiiiie e e e e e e e e e e e e e e e e eeennnnes 18

BUSY OULPUL ...t e e et e e e ettt e e e e e et e e e e e aa e e aeennaeeeas 19

DONE OULPUL ...t e et e e e et e e e e e e et eeeeeen e e eeennnaaeas 20
Enable FUNCLioN BIOCK MOEL........cooeeie e e e e 22

TrQOEr SAtEIMENTS ...ttt e e e e e e e e e et a e e e e e e e eeeeennnan 23

RETURN SEAIEMENT ..ot e e et e e eaeeans 23

o 1YL= = Vo P 23

a1 E=1 2= 11 o] ISP 24

MaiN COUE BOOY ...ttt e e e e e e e e e e e e e e e enann s 24

MOtION FUNCHION BIOCKSueiiii e e e e e e e 24

EFTOr PrOCESSING ...ttt e e e e e e et e e e e e e e e e eeenann s 24

AV £z 11 To @ U1 o 11 | SRR SUPPPPPPRPRP 25
Execute / Enable MOl VANANTSuuiiiiiieiieieeiie et e e e et e e e e e e e e eannnnn s 26

RV L= O PSP 26

VAN 2. e 26
ReCOMMENAEd INTEIOCKS.t e e e e e e e e e e e e e e e e e e eeeannn e eas 28
SUMMIMIBIY ..ottt oottt oo etttk e ootttk e e e e e e ta e e e e e e aa e e e e e e ea e e e e e e ea e eeeeaaa e eeeesnn e eeennnnaeaennen 29
AppendiX A: LOGIC ANAIYZET tFACES.......uuuiii et e e e e e e e e e eeaena s 30

Doc#: AN.MWIEC.01 February 23, 2014 Page 2 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Introduction

PLCopen is an organization that creates programming specifications for motion control in the
automation industry. Manufacturers, OEMs, and End Users who are members of the PLCopen
organization pave the way for standardized programming of motion control applications. Some users
may not be familiar with the standards, and assume that manufacturers of automation products alone
provide products which conform, but there’s more an application programmer can do to maximize the
benefits offered in the PLCopen specification. This document provides details on extending the
PLCopen concept to other functions required by an application. This application note focuses on how
to build upon the standards by describing code templates which have proven successful, and often
refers to function blocks in Yaskawa’s Toolboxes at www.yaskawa.com/iectb.

Visit http://www.plcopen.org/pages/tc2 motion control/ for the complete PLCopen specification.

Benefits

One of the best outcomes of the PLCopen specification is the definition provided for function block input
and outputs. This provides a clear and concise shell as a starting point when considering the type of
application level function to be created. Two main function block categories are specified: the Execute
model and the Enable model.

By strictly following a few key features of the PLCopen specification, application level function blocks
can provide a high degree of robustness, usability and predictability. The behavior described makes it
very easy to incorporate and debug user specific functions in an application. Errors and ErrorIDs can
be elevated to the calling functions. Interlocks are easier to create. Linking activities becomes easier.
This is the focus of this Application Note.

Getting Started

1) Decide upon the function block inputs and outputs before writing any code. Draw the function
on a piece of paper first. This step will help you determine the necessary data required from
an implementation perspective. It helps to imagine how the finished function block would be
used by the application code.

2) Depending on the type of functionality to be created, consider the ideal situation in which the
function block would operate. Will it require placement in a high speed cyclic task to capture
data in real time? Will it also contain some intensive data processing? If so, there may be an
advantage to split these two activities into separate function blocks, so that one can be
executed in a high priority task, and the other executed in a lower priority task.

Doc#: AN.MWIEC.01 February 23, 2014 Page 3 of 31

http://www.yaskawa.com/iectb
http://www.plcopen.org/pages/tc2_motion_control/

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Function Block Models

There are only two basic function block models as described below. These functions are shown with
the minimum inputs and outputs. Notice that Execute pairs with Done, and Enable pairs with Valid.
This aids the visual organization of the code structure in FBD format when contacts and coils are
connected to the function block.

Execute_Function_Block Enable_Function_Block
BOOL — Execute — Done - BOOL BOOL |- Enable mmmmmm) Valid |- BOOL
Busy - BOOL
Error -}- BOOL Error -— BOOL
ErrorlD —}- UINT ErrorlD —+ UINT

Figure 1: Execute and Enable function blocks in their most simple form.

Variants on these two models will be described in detail in the following sections. All implementations
will include additional inputs and outputs for an actual application as shown in blue below.

Execute_Function_Block Enable_Function_Block
Some DataType My_vart My_vart Some DataType Some DataType My_vart My_vart Some DataType
BOOL - Execute Done +— BOOL BOOL -{- Enable Valid - BOOL
Some DataType — My_Var2 Busy - BOOL Some DataType — My_Var2 My_Var4 - BOOL
Some DataType — My_Var3 CommandAborted —— BOOL Some DataType — My_Var3 Error 4+~ BOOL
Error - BOOL ErrorlD — UINT
ErrorlD | UINT My_Var5 +— Some DataType
My_Var5 +— Some DataType

Figure 2: Execute and Enable function blocks with additional 1/0.

Doc#: AN.MWIEC.01 February 23, 2014 Page 4 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

The main differences between the Execute and Enable models are show in the following table.

Table 1: Execute and Enable Model behavior comparison

Function Block Type Required Behavior Example
The action is temporary; it has Homing to a limit switch, C channel, and then
a finite beginning and ending. making an offset move.
Execute

A sequence of activities.
The action takes only one scan. | Setting a parameter.
The function can complete its Reading a parameter.
job in one scan, and repeats
Enable this action each scan.

The action must run indefinitely. | Monitoring for new product registration latches
to store them into a circular buffer.

Doc#: AN.MWIEC.01 February 23, 2014 Page 5 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Input Behavior

Execute Model | Inputs other than Execute are only to be read upon the rising edge of Execute. The
concept here is that the function uses input values present when execution was
initiated. This requires copying VAR_INPUTSs to a VAR in the Initialize section.

Enable Model A function block using the Enable model is expected to read the VAR_INPUTSs every
scan and if necessary, act upon changed values.

VAR_IN_OUT data is passed to the function block by reference, meaning that only a pointer to the
original data location is copied into the function block, eliminating longer data copy times for larger data
types. Because a VAR _IN_OUT references the original data, not a copy, changes made to the
variable inside the function block can be seen immediately by the application code as vise versa.
Program accordingly, and use the Done or Valid output to indicate when data referenced as
VAR_IN_OUT is valid.

Output Behavior

A brief review of the PLCopen specification follows.

1) Only one PLCopen status output (Done, Busy, CommandAborted, Error) can be
TRUE at one time.

2) Execute Function Blocks have a finite execute life which will end in one of the three
ways:

a. Done — Function block has completed its task successfully.

b. CommandAborted — Another action took control away from the function block, so
this function did not complete its task successfully.

c. Error — There was a problem with the VAR_INPUTSs or with other internal
processing that prevented the function block from completing its task.

Once one of these three PLCopen status outputs are set, the function block can never
change the outputs until the Execute or Enable input goes low and the function block
restarts again.

3) When the Execute input goes low and the function is no longer Busy, VAR_OUTPUTs
must be set to zero. This also applies to non Boolean outputs that are part of a
specific implementation. If the Execute input goes low while the function block is still
Busy, one of the three outputs (Done, CommandAborted, or Error) will pulse for one
scan when the function completes.

4) When the Enable input goes low, VAR_OUTPUTs must be set to zero.

Doc#: AN.MWIEC.01 February 23, 2014 Page 6 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Execute Function Block Model

PLCopen Function Block Template — Execute Model

Main Code Body / Core Logic

Motion Function Blocks

Error Processing

Set Command Aborted Output

Set Busy Output

Set Done Output

Figure 3: Execute Template in simplified form

Doc#: AN.MWIEC.01 February 23, 2014 Page 7 of 31

YASKAWA

Subject: Application Note

Product: MPiec Series Controllers

Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Figure 3 is a representation of each

part of the function block code. The order of operations is the
same in Ladder Diagram (LD) or Structured Text (ST) programming. Code order is very important for
ensuring consistent output behavior, which is essential for proper sequencing and error trapping,
especially when function blocks are triggered using an R_TRIG one shot.

What follows is a detailed explanation of the code sections depicted in Figure 3 on page 7.

Trigger Statements

This is where most if not all R_TRIG and F_TRIG function blocks should be placed, especially
in ST function blocks. Typically one of the trigger statements detects the rising edge of the
Execute or Enable input to be used to run the initialization code on the first scan. By inserting
trigger statements at the top of the POU, they are sure to run every scan (no IF / END_IF
conditions to inadvertently prevent execution.)

LD Format

It's less important to put Trigger statements at the top of function block written in LD, and most

examples are actually initialization code.

This is because a LD POU does not have the

potential for conditional execution, such as the IF statementin ST. Triggers can be used
throughout a LD function block without concern.

R_TRIG_3

OOI2 Enable LLTILY |
| | ClK Q

B S

Doc#: AN.MWIEC.01

SuB
EN ENO
Buffer.BufferSiz BufferMinusOne

UINT #1:
MOVE
EN ENO

TriggerData.Bit: PatternData.PatternArray[0]

MOVE
EN ENO

UINT#1 PatternData.PatternSize

Figure 4: Execute Model — LD trigger statement example

February 23, 2014

Page 8 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

ST Format

1)
2)
3)
4 R_TRIG_Execute (CLE:=Execute):

5 R_TRIG ChangsVelocity (CLE:=(Velocity <» PreviousVelocity) ANLC NOT (R_TRIG_ChangeVelocity.Q) ANLC NOT (R_TRIG Execute.Q)):

& R_TRIG NewSegment (CLK:= (CurrSegment <> ActiveSegment) AND NOT (R_TRIG NewSegment.(Q)):

7 R _TRIG Complete (CLE:=AllSequencesDone);

Figure 5: Execute Model - ST trigger statements example.

RETURN statement
This line is purely for efficiency, but if not used carefully it can lead to problems that are hard to
debug. A RETURN causes the function block to exit without running any of the instructions
below the RETURN statement. Imagine a project with over one hundred function blocks.
Most likely, only a few blocks may be active at any one time while all others RETURN. This
saves processing time because the controller will not have to evaluate the many IF conditions
which may follow, presumably skipping most of the code because the function is not to be
executed.

Note that when the RETURN takes place, the debug information shown for the remainder of the
POU contains old values from the last time it ran.

LD Format
In this example “Adjusting” is a variable connected to the Busy output of a PLCopen motion
function block.

(*If Enable and all busy outputs are off, the function exits*)

001

I Enable Adjusting ContBusy Error Valid
| 7 | | 7| | 7| | 7| | 7| '
1 /0 1 /0 1/ T 1/ T 1 /T \RETURN>
Figure 6: Execute Model — LD example RETURN statement.
ST Format
[{* This line causes the function block to exit if the execute, and all ocutputs are off. (For efficiency.)
i {* IMPORTANT, be sure to include Commandfborted in the interlock logic 1f a motion block will be used.)
123 IF NOT(Execute) AND NOT{Active) AND NOT (Busy) AND NOT (Done) AND NOT (Error) THEN RETURN; END_TIE;

Figure 7: Execute Model - ST example RETURN statement.

Doc#: AN.MWIEC.01 February 23, 2014 Page 9 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Setting the iActive Flag
‘Internal Active’ is a Boolean flag to keep the function block code running even if the Execute
input goes false before the function block is Done. The Execute input can be pulsed, and the
code will continue to execute, and the outputs remain valid until one scan after the final
outcome of the function occurs. The iActive flag serves as a good way to control the execution
of sub functions and other logic within your function block. It is named ‘internal Active’ to
differentiate from the other PLCopen output Active which is found on PLCopen function blocks
that control motion.

There is an underlying theme at work here, and it pertains to the execution behavior of a real
time system such as a PLC. Basically speaking, don't let code become dormant if it's in the
middle of executing. If this situation occurs, it will likely cause unexpected behavior. Pulsed
or event actions such as R_TRIG or functions with an Execute input work by comparing a value
on a previous scan to the current scan. Execution must not be interrupted by the RETURN
statement or other logic change which would prevent a function from working normally the next
time it's required to execute.

LD Format

In this example from the CamBIlend function block, three separate inputs act as the Execute
input based on the mode required. Normally just the standard Execute would be included
instead of three.

(*iActive Interlock™)

002

ExecuteRampln iActive |
| | P!
10 L2 |
ExecuteRampOut
P .
ExecuteStandStill
iActive Busy CommandAborted Error
| | | /| | /|
10 1 170 100

Figure 8: Execute Model - LD example for setting the iActive flag.

ST Format

|:Lﬂ ifctive:= Execute COR (ilctiwve ANLC HCT (Done) ANLC HOT (Commandiborted) ANL NOT (Exrrox)):

Figure 9: Execute Model - ST example for setting the iActive flag.

Doc#: AN.MWIEC.01 February 23, 2014 Page 10 of 31

YASKAWA

Subject: Application Note

Product: MPiec Series Controllers

Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Initialization

The PLCopen specification states that VAR _INPUTSs are only read upon the rising edge of the
Execute input. This section is very important because it’s the location where the
VAR_INPUTSs passed into the function block are validated and transferred to a working copy.
Create a haming convention so that copied VAR_INPUT values are obvious. If the
VAR_INPUT name is Acceleration, use iAcceleration in the Main Code Body for example.

Tip: During code development, make a habit of adding new variables (VAR) into the
Initialization section immediately, and provide an initial value. It will save debug time by
reducing the likelihood that your function block will not execute properly more than once due to
variables being left in an unexpected state from a previous run. This is one of the most
important things you can do to boost the reliability and consistency of function block execution.

LD Format

It's more difficult to show a good example of initialization code in LD format. Initialization is
associated with algorithms and similar processes which are typically written in ST. LD code
tends to be self initializing by nature. The contact and coil approach will both set and clear a
bit scan every scan. Yaskawa recommends avoiding Set and Reset coils if possible. These

(*This section acts tpon fising and faling edge of EXECUTE®)
(*Load Input X-Y Targets into the Gantry Structure®)

R_TRIG_Execute MOVE_LREAL_1 MOVE_LREAL_2
[~ MOVE_LREAL | [MOVE_LREAL |
003 Exeaute R_TRIG
I—{ | CK Q EN ENO EN ENO
LJ X¥_Position— Input Y_Postion— Input
Gartry.X.Postion—{ QUEpUE— OuEpuEl—Gantry.X.Postion Gantry.Y.Postion—1- Output— OUtpUE}—Gantry.Y.Postion
— —_—
MOVE_LREAL 3 MOVE_LREAL_4
[MOVE_LREAL 7 [MOVE_[REAL)
EN ENO EN ENOJ
Acceleration— Input Deceleration— Input
Gartry.Acce— - OQutput— Outputt—Gantry.Accel Gartry.Dece—- Output— Outputt—Gantry.Decel
S e

MOVE_LREAL_5

Startinterpolate |
EN L9

Input |

Output— Outputl—Gantry.Velocity

Figure 10: LD example for initializing variables.

Doc#: AN.MWIEC.01 February 23, 2014 Page 11 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

coil types tend to cause more bugs, but if they are used, performing a reset coil for each set coil
would be another great example of initialization code in LD format.

ST Format
Notice the use of R_TRIG_Execute.Q, which is the output of the R_TRIG function used in the
initialization section.

18 [R R R R R R R R R R R A R AR AR AR R AR AR AR R AR
19 [FREEr TR Initialization Section el bl bbbk b bbbkl
20 [R R R R R R R R R R R R R R R R R A R AR R AR AR R AR AR R AR AR R AR AR
21 IF E_TRIG Execute. THEHN

22 (* Sequence Initialization *)

23 (* Sequences relate to the number of individual moves that the vector
24 CurrSequence:=INT#1;

25 FrevSequence:=INT#0;

26 AllSequencesDone :=FLLSE;

27

28 (* Segment Initialization *)

28 CurrSegment:=INT#1;

30 FrevSegment :=INT#0;

31 MoveSegment :=INT#0;

32 IF SegmentData.LlLastSegment = INT#1 THEHN

33 HextSegment :=INT#1;

34 ELSE

35 HextSegment :=CurrSegment + INT#1l;

36 END IF:

37

358 PreviousVelocity:=Velocity; (* Imnitilaizing PrevVelocity
39

40 ¥hxisConfigured:= (Gantry.X.Ref.hxisNum <> UINT#0);

41 YhxisConfigured:= (Gantry.Y.Ref.AxisNum <> UINT#0);

42 Zhxi=Configured:= (Gantry.Z.Ref.hAxisNum <> UINT#0) ;

43 TangentixisConfigured:= (Gantry.Tangent.Ref. AxisNum <> UINT#0) ;

44 TEngageData.S5lavelbsolute :=TRUE;

45 ConfiguredhixesInSync :=FALSE;

46 END IF;

Figure 11: Execute Model - Example ST code for initializing variables.

Doc#: AN.MWIEC.01 February 23, 2014 Page 12 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Main Code Body
This is where the core activity of the function block resides. The Main Code Body logic always
includes reference to the iActive flag. This section may contain a series of other function
blocks which execute in sequence, or a wide variety of other actions based on the purpose of
the function you are designing. The best way to determine the appropriate code structure to
implement is to refer to the many examples in Yaskawa's Toolboxes, available at
www.yaskawa.com/iectb. Recommended LD references include the Home LS Pulse
function in the PLCopen Toolbox.

LD Format

ReadCamState
MC_ReadParameter

005 Shve— - AxsE ————— Axis—>Slave

Active
|—{ | Enable Valid |-
UINT#1540—{ PammeterNumber Busy |—

Emor —Cam5StateError

ErmorID —CamStateErrorID

Value [—CamS5tate

. v,

(*On the first time a CamShift completes (falling edge) and the slave is not yet
engaged (CamState=0), set the Startup output to engage.*)

R_TRIG_1

AN Y
006 Active AND [R_TRIG] serup |
| | CLK QI D |
F_TRIG_?
(F_TRIG)

ControlData.Shifting
{1 Kk Q

CamState—

LREAL #0.0—

StorePointer—

UsePointer— S

| SR

Figure 12: Execute Model — A partial example of LD code of the Main Code Body, which is controlled by the iActive flag

Doc#: AN.MWIEC.01 February 23, 2014 Page 13 of 31

http://www.yaskawa.com/iectb

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

ST Format
26 [FRFERRAAA S A SRR AR A A A AR Main Operation Sectiom = ~ #¥¥ ¥ 3addsadd s ddvddsdsssasy }
27 IF Enable ANLD NCT (Error) THEN
28
29 Mini:=INT#0;
30 Maxi:=SegmentData.LastSegment;
31
32 (* Make sure the VectorPosition is withing the boundaries of the total wvector path)
33 IF VectorPosition < SegmentData.Segment[0].VectorDistance THEN
34 VectorPosition:=5egmentData.Segment [0] .VectorDistance;
35 ELSE
36 IF VectorPosition > SegmentData.Segment[LastSegment].VectorDistance THEM
37 VectorPosition:=SegmentData.Segment [LastSegment] .VectorDistance;
38 END IF;
39 END IE;
40
41
42 WHILE ((Maxi - Mini) > INT#1l) DC
43 SearchlLoc:= (Maxi + Mini) / INT#2;
44 IF VectorPosition > SegmentData.Segment[Searchloc] .VectorDistance THEN
45 Mini:= (SearchLoc):
46 ELSIF VectorPosition < SegmentData.Segment[Searchloc].VectorDistance THEN
47 Maxi:= (SearchLoc) ;
48 ELSIF VectorPosition = SegmentData.Segment[SearchlLoc] .VectorDistance THEHN
49 Mini:=S5earchlLoc;
S0 Maxi:=5earchlLoc;
a1 END IF;
52 Counter:=Counter+INT#1;
53 END WHILE;
D4
55 IF (Maxi = Mini) THEHN
56 AotiveSegment:= SegmentData.Segment [Mini] .Segment:
57 CutputFlags := SegmentData.Segment [Mini].ClutputFLags;
58 ELSE
59 AotiveSegment:= SegmentData.Segment [Maxi] .Segment:
60 CutputFlags := SegmentData.Segment [Maxi].ClutputFlags;
61 END IF;
62
63 ELSE
64 (* Clear FB ocutputs when function is disabled *)
65 AotiveSegment := INT#0:
L CutputFlags := DWORD#¥O;
67 END TE;

Figure 13: Execute Model - ST code example show the Main Code Body.

Motion Blocks
This section is only necessary if the function block being designed provides motion, especially if
written in ST. The strategy here is to provide the ability to execute (scan) the motion function
blocks with their Execute input set to FALSE before the RETURN statement is executed. This
will ensure that motion functions used within your function block can execute correctly the next
time they are required.

Doc#: AN.MWIEC.01 February 23, 2014 Page 14 of 31

YASKAWA

Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Subject: Application Note

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Frozen code

One of main challenges is to avoid leaving a function block frozen (its code no longer being
executed when it or any of its sub function blocks are still Busy.) In LD, this is easy to avoid
because typically all ladder rungs are executed each scan. In ST, this quickly becomes a
bigger challenge because inserting functions under IF statements can cause major problems if
the logic in the IF statement changes before nested function blocks are Done.

ST Solutions

Solve the logic required to determine if executing a particular sub function is necessary within
nested IF statements, but leave the sub functions outside of all IF statements so they are
evaluated every scan. This will result in the same logic but avoid the possibility of leaving sub
function blocks in a frozen state. A portion of a function block implementing this strategy is
shown below. The variables XAxisConfigured, YAxisConfigured and SetPosDone are solved

inside IF conditions in the Main Code Body.

94 Y CamIn X{
95 Gantry.Vir

97 XInSync:=
98 HaxisBusy:
83 XhxisError

112 Gantry.Vir

114 YInSvnc:=
115 YaxisBusy:
116 YAxisError
117 YoxisError

):
tual.Ref:=

96 Gantry.X.Ref:=

tual.Ref:=

113 Gantry.¥Y.Ref:=

I0o:=

(* Execute PLCopen Function Block *)
Y CamIn X.Master;
Y CamIn ¥X.Slave:
¥ CamIn X.InSync;
¥ CamIn X.Busy;
Y CamIn X.Errox;

Y CamIn Y.Master;
Y CamIn ¥Y.Slave;
¥ CamIn ¥Y.InSvnc;
¥ CamIn ¥.Busy:
Y CamIn ¥Y.Error:
Y CamIn Y.ErrorID;

56 Y CamTn X.Master:= Gantry.Virtual.Ref:

87 ¥ CamIn X.Slave:= Gantry.X.Ref;

88 Y CamIn X.Execute:= ikctive AMND ((XAxisConfigured AND SetPosDone) COR XAxisError):
89 Y CamIn X.CamTableID:= PathID.XAxisTable;

S0 Y CamIn X.EngagePosition:= LREAL#0.0;

91 Y CamIn_X.EngageWindow:= LREAL#0.0;

a2 Y CamIn X.EngageData:= EngageData;

83 ¥ CamIn X.Periodic:= TRUE;

100 XAxisErrorID:= ¥ CamIn X.ErrorID;

101

102

103 Y CamIn Y.Master:= Gantry.Virtual.Ref;

104 Y CamIn Y.S5lave:= Gantry.Y.Ref;

105 ¥ CamIn Y.Execute:= iBctive AND ((YAxisConfigured AND SetPosDone) COR ¥AxisError):;
106 Y CamIn Y.CamTableID:= PathID.¥YAxisTable:

107 ¥ CamIn Y.EngagePosition:= LRERL#0.0;

108 Y CamIn Y.EngageWindow:= LREAL#0.0;

108 Y CamIn Y.EngageData:= EngageData;

110 ¥ CamIn Y.Periodic:= TRUE;

111 ¥ CamIn Y{(): (* Execute PLCopen Function Block #)

Figure 15: Execute Model - ST example of Motion Function Blocks on the main level (Not under an IF statement)

Doc#: AN.MWIEC.01

February 23, 2014

Page 15 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Error Processing

Latching Function Block Errors

A very important debugging feature provided by the PLCopen specification is the ability of each
function block to latch (or freeze at the current state) when an Error occurs so that the code
can be debugged to determine the cause of the Error. Without this simple feature, debugging
transient errors would be exceeding difficult.

To integrate error trapping effectively, a referenced function block that generates an error must
have its Execute input held high to insure that it continues to report its ErrorID. In the LD
example shown below, notice that the contacts ‘iActive’ and ‘SetPositionError’ work together to
hold the Execute high and lock on once an Error has occurred. When the Error has been
acknowledged, the calling function drops the Execute input, which will start a chain reaction
which will drop iActive, which will drop MC_SetPosition’s Error output, which will drop this
function block’s Error and ErrorID output.

TIP: There may be more than one Error present in the function. Because the IEC code
executes from top to bottom, the last instruction to write to a variable will provide the resulting
value. In the case of reporting ErrorIDs, you may want to prioritize the errors so that the most
important or relevant ErrorID is output in the event of multiple errors. This means arranging
them in increasing order. See Figure 17 and Figure 18 starting on page 17.

LD Format

The first graphic shows an error being set by a sub function used within the function block.
Notice the variable SetPositionError. The example shown in Figure 16 might exist in the Main
Code Body. The example shown in Figure 17 demonstrates the Error processing code which
comes below the Main Code Body. Recall the Execute Template overview on page 7 for
reference.

MC_Set Pas tion_1
TC_S &P oeition
Ax Axis

006 Axi AXS
| iActive SetPosition Hnn‘inQE)une |
| |] | Execute Done i

HomeData.Position Position Busy [—SetPosition Busy |
Mode Ermor —SetPosition Eror

SetPositionBusy
]]
1 L}

EmorlD SetPosition ErorD

SetPositionError
—] —

Figure 16: Execute Model — LD example showing a function block’s Error output used to hold its Execute high.

Doc#: AN.MWIEC.01 February 23, 2014 Page 16 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Figure 17 shows the Error handing code. If simultaneous errors may occur, consider
prioritizing them so the last MOVE instruction copies the ID of the most important error to the
ErroriD.

(*Set Error Qutput*)

007

Brecute PulseError MONE Error |
|} ' 1 | ENENO ! |
PulseErrorlD ErrorID
IActive
—
OffsetError MOVE
1 | ENENO

1 r
OﬁetErrUIDUErmrID

SetPns'rt\ulnErmr
r

SetPosition ErrorD ErrorlD

C

oos MOVE

Errar
’—< /l ENENO
UINT# ErrorlD

Figure 17: Execute Model - Example in LD showing the Error processing code.

Doc#: AN.MWIEC.01 February 23, 2014 Page 17 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

ST Format

This example shows a total of 12 possible errors being monitored. If any one of them occurs,

it will lock on the Error output, and set the appropriate ErrorlD. Even if the original Error goes
away, the Error bit locks on in line 433, and because of the logic in lines 436 through 447, the
ErrorID will still be set to the value that caused the initial Error. The more ErrorlDs the better
to provide an adequate description of the problem that occurred to the user or machine operator.
This example shows the incorporation of custom ErrorIDs allocated for specific errors and the
propagation of errors from embedded PLCopen function blocks.

43z (rrrzmmesssssasrrzTansaaaasseaaas Error Handling Section trzzzmssramarrrazTTIzETassIaaaNL)
433 Error:=Execute AMND (Error OR SegwentSizeError OR PairSizeError COR SegmentTypeError OR StandStillDurationError OR InputConditionsError OR SegmentTooShort OR
l434 CircleError OF StarthngleError OR ¥ _CanStructSelect X.Error OR ¥ CamStructSelect Y.Error OF ¥ CamStructSelect Z.Error OR ¥_CamStructSeleet_T.Error):
435 IF Ercor THEN

1436 IF SegmentSizeError THEN ErrorID:=UINTH#10038; END_IF;

1437 IF Pair3izeError THEN ErrorID:=UINT#10041: END_IF;

1438 IF SegwentTypeError THEN ErrorID:=UINT#10054: END_IF;

1439 IF SegmentTooShort THEM ErrorID:=UINTH#10055; END_IF;

(440 IF Stand3cillDurationError THEW ErrorID := TINT#10134: END_IF;

441 IF InputConditionsError THEN ErrorID := UINTH1013S: END_IF;

1442 IF CircleError THEN ErrorID:=UINTH10056; END_IF;:

1443 IF Starchnglefrror THEM ErrorID:=UINT#10058; END_IF;

1444 IF ¥V _CamSrructielect X.Error THEN ErrorID:=Y Cam3tructielect X.ErrorID; END IF:

1445 IF ¥_Camdtructdelect_Y.Error THEN ErrorID:=Y_Cam3tructielect_Y.ErrorID; END_IF:

|46 IF ¥_Cam3truct8elect_Z.Error THEN ErrorID:=Y¥_CamStructielect_ZI.ErrorlID; END_IF:

l247 IF ¥ CamStrustSelect T.Error THEN ErrorlD:=Y CamStructSelect T.ErrorID; END_IF:

448 ELSE

1449 ErrorID:=UINTHO;

50 END_IF:

Figure 18: Execute Model - Example Error processing in ST.

CommandAborted Output
This VAR_OUTPUT is only required if encapsulating PLCopen motion function blocks that
provide a CommandAborted output. Connect the CommandAborted output of all sub
function blocks together in an OR format as shown below. PLCopen specification states that
Done, Busy, CommandAborted, and Error must be mutually exclusive, so in case your
function block is already outputting an error for some other reason, suppress the
CommandAborted output by adding the Error contact to the logic as shown.

LD Format

O rmitaborted Error Comrmardaborted
I-A—| T/ <

BackOffAborted
[Ay S}

Puisesborted
[E—)

Offsettborted
B iy il

Figure 19: Execute Model - CommandAborted example in LD.

Doc#: AN.MWIEC.01 February 23, 2014 Page 18 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

ST Format

Sometimes CommandAborted is simply the same value as output from a referenced PLCopen
motion function block. The following line is from the MoveRelative_ByTime function block in
the PLCopen Toolbox.

|43 Commandiborted :=MC MoveRelative 1.Commandiborted AND HOT (Error):

Figure 20: Execute Model - ST example of setting the CommandAborted output.

Notice that the concept is the same whether writing in LD or ST. OR all CommandAborted
outputs together with AND NOT(Error). As shown in the Execute Model graphic on page 7,
the code order of Error, CommandAborted, Busy, and Done is important for the PLCopen
output exclusivity concept to work correctly.

Busy Output
Assume that your function block will take some time (multiple scans) to complete, such as
homing an axis. The Busy output is set while your function is executing or any sub function
block within your function block is Busy, thus the Busy outputs are ORed together. Once
again, the order of operations for setting outputs is important for maintaining the PLCopen
specification that only one output (Done, Busy, CommandAborted, or Error) can be on at one
time. For robustness, ensure that the Error output has not been set just above in the error
handling section. When multiple sub functions are referenced from a single function block,
conditions may exist where some activities are Busy and others have an Error. Some
creativity and interpretation is required to make the new function block’s behavior ideal.

Special Case
If your function block is simple and guaranteed to finish in one scan, a Busy output is
technically not necessary, although Yaskawa recommends including the output for consistency.

Doc#: AN.MWIEC.01 February 23, 2014 Page 19 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

LD Format
This is an example from the Home_LS_Pulse function block in the PLCopen Toolbox. The
Busy flags here are from the five PLCopen motion function blocks contained within.

0 1|2 L\mI\tB%sz Errar Busy |

|' 1 F |/} |

Back OffBusy
i

PulseBusy

OffsetBusy
I

SetPosiiorBusy
=

Figure 21: Execute Model - LD example to set the Busy output.

ST Format
The following example is from a function block containing four customized PLCopen function
blocks.

Figure 22: Execute Model - ST example to set the Busy output.

Done Output
The Done output indicates that the function block has finished successfully and that no errors
were generated. It only requires one line of code to program the Done output. The following
graphics show code which complies with the PLCopen specification; the Done output will
remain high as long as the Execute input is high. If the Execute input has been set low
before this function completes, the Done output will pulse for one scan.

Special case

In the LD and ST examples below, notice one includes NOT(Error) and the other does not.
Based on the collection of sub functions used to build your function and the task they are to
perform, it may be necessary to deliberately alter or suppress an output to conform to the
PLCopen rule that only one output among Busy, Done, CommandAborted, Error can be on at
one time. Generally, the output behavior will be more robust if they are thought of as having a
hierarchy in order of importance:

Doc#: AN.MWIEC.01 February 23, 2014 Page 20 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

1) Error

2) CommandAborted

3) Busy

4) Done

This is the same order as they are shown in the Execute function block model section starting
on page 7. In summary, if any of the preceding outputs are on, the current output cannot be
set on.

LD Format

(*Set Done Output*)

013 HomingDone Done |
1 I

1 T 4 |
Execute Done
—— J

Figure 23: Execute Model - Example to set the Done output.

ST Format

When the function block being designed will contain multiple sub actions, use another internal
Boolean flag ‘Complete’ to indicate that all function block activities are Complete. Complete
should be set in the Main Code Body as a result of the last action successfully completing.
Most ST function blocks in the Yaskawa Toolboxes include this flag.

454 [AR R AR AT ERT AT A Lone Cutput R R R R A R AN A A A AT ERLLLLL L

455 Done:= |((ictive AND Cowplete) OFR (Execute AND Done)) AND NOT(Error);

Figure 24: Execute Model - ST example including the Complete flag.

Doc#: AN.MWIEC.01 February 23, 2014 Page 21 of 31

YASKAWA

Subject: Application Note

Product: MPiec Series Controllers

Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Enable Function Block Model

s

PLCopen Function Block Concept — Enable Model

Trigger statements

IF NOT(Enable) AND NOT(iActive) THEN RETURN

Set iActive status flag

Initialization

Main Code Body / Core Logic

Motion function blocks

Error Processing

Set Valid Output

Doc#: AN.MWIEC.01

Figure 25: Enable Template in simple form.

February 23, 2014

Page 22 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Many aspects of the Enable function block model are identical to Execute model, and therefore some
topics are only described in the Execute Model section.

Trigger Statements
Using R_TRIG and F_TRIG is the same whether the function block being created is of the
Execute or Enable type. See the Trigger statements on page 8 in the Execute Model section
for more details.

RETURN statement

This line is mainly included for efficiency. It is also quite similar whether creating an Execute
or Enable function block. See page 9 for more details. If a function block is not Active
(dormant, and not processing anything) it makes sense to RETURN back to the calling POU
instead of executing any of the code in the function block. It must be used with caution
however. Using a RETURN statement improperly will cause many bugs. Only allow the
RETURN to take place when all of following conditions are TRUE:

1) Execute or Enable = FALSE

2) iActive = FALSE

3) Busy=FALSE

4) Error = FALSE
By checking these conditions, it ensures that all outputs are off, and any sub function blocks are
also in a dormant state.

Tip: Only use one RETURN per Function Block if possible. It can be confusing to debug a
POU when trying to determine if code is actually being executed or if a RETURN has taken
place.

iActive Flag
The concept of ‘Active’ was adopted during the development of our templates as an internal
way to indicate when the function block was actively processing code. This concept is
necessary because no single PLCopen input or output exactly captures this condition. The
Execute input isn’t a reliable indicator because it may be pulsed by the calling code.

Doc#: AN.MWIEC.01 February 23, 2014 Page 23 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Initialization
This section is the same whether creating an Execute or Enable type function block. See the
Initialization section in the Execute Model section for more details. (Page 11)

Main Code Body
The Main Code Body runs only when the Enable input is high and there are no Errors. In ST
function blocks, this is typically the first IF condition of the section. In LD format, the main
section does not stand out unless comments are provided.

Motion Function Blocks
This is an optional section which is only required if the function block calls other function blocks.
If the function block will be designed using ST, it's best not to include them under any IF
conditions for simplicity when debugging and to avoid the trouble of coding to ensure that they
are not left in a Busy state.

Error Processing
This section is very similar whether creating an Execute or Enable type function block.

LD Format
(*Set Error Output*®)

Dlll Enable Decslo nError
| | | | NEND

A
w3

UINT#10081 ErrorID

CamStateError | "CNE
ENENO

I
Gm&ateErDrIDU—ErmrID

Figure 26: Enable Model - LD Error Processing example.

Doc#: AN.MWIEC.01 February 23, 2014 Page 24 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

ST Format

EERERRRA AR AR R RARARE Error Handlin Cectiomn R R R R R R R R OR R OR R RO MR R
LTYror dandling Sectlo)

238 Error:=Enable AND (Error CR ModeError CFR ClearError OR CamShiftError):;
238 TIF Error THEHN

240 IF ModeError THEN ErrorID:=UINT#10082; END IF;

241 IF Prml511Error THEN ErrorID:=MC ReadParameter 1511.ErrorIDl; END TF;
242 IF Prml006Error THEN ErrorID:=MC ReadParameter 1006.ErrorIDl; END TF;
243 IF Prml512Error THEN ErrorID:=MC ReadParameter 1512.ErrorIDl; END TF;
244 IF ClearError THEMW ErrorID:=Y CamShift Clear.ErrorID; END IF;

245 IF CamShiftError THEH EIIGIIE:=Y_Cam5hift_l.EIr0rIE; END_IF;

246 IF CamShiftAbort THEN ErrorID:=UINT#7282; END TF:

247 FELSE

248 ErrorID:=UINT#0;

249 FND TE;

Figure 27: Enable Model - ST Error Processing example.

Valid Output
Setting the Valid output is quite simple. Only one line of code is required to operate the Valid
Output. The outputs of the function are Valid when the Enable input is high and there are no
Errors. According to PLCopen specification, if an error occurs, the Enable input must go low
and high once again to re execute the function block.

LD Format
(*Set Valid Output®)

043 p—i.,ue- hrul Viakd
F {

Figure 28: Enable Model - LD example for setting the Valid output.

ST Format

a1 [T R AR AR AR AR AR RERRRARA G AT A G valid Section R R R AR A AR AR AR AR A AR A G A GE R AR FH N

82 Walid:=Ensble AND NOT(Error):

Figure 29: Enable Model - ST example for setting the Valid output.

Doc#: AN.MWIEC.01 February 23, 2014 Page 25 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Execute / Enable Model Variants

Both function block models are suitable for a wide range of applications, however in practice there are
many conditions where the programmer may find that neither model perfectly applies for the required
behavior.

Variant #1.:
The function block behaves like the Enable model, but contains PLCopen function blocks with
an Execute input (MC_MoveVelocity and MC_Stop). This Jog function block is an example
which includes BOOL inputs for Forward and Reverse. The function block will stop jogging the
axis when Forward or Reverse go low. On its own, MC_MoveVelocity will continue to move
the axis when its Execute input goes low.

Jog 1
(Jog

Axisl— Axis ———— Axist—AXis1

—

JogFwd-—| Forward InvVelocity F—V 140

JogRev—{ Reverse Done [—e
JogSpead—{ Velocity Busy o
JogAccel—— Acceleration Error
JogAccel— Deceleration ErrorlD [~

o Jerk

L

Figure 30: Function block variant of the Enable Model.

Variant #2:
Some activities may require the characteristics of both function block models to perform their
function well. The Feed_To_Length example below is designed to move an axis a default
distance, but update the actual distance once an expected sensor input reports the position of
the product being processed. That part of the activity can be handled nicely with an Execute
model function block; all of the functions used within are Execute format. The
Feed_To_Length function block shown here has added functionality; VAR_INPUTS are
provided so that the function block can keep track of expected registration marks, and provide
Error outputs if a consecutive number missed marks, or MissedLatchLimit is reached. If
programmed according to PLCopen, an Execute model function cannot remember how many

Doc#: AN.MWIEC.01 February 23, 2014 Page 26 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

consecutive registration marks may have been missed, because you would have to initialize
that counter when the rising edge of Execute goes high. Execute model function blocks are
designed to have no memory of what they were doing or how the previous execution resulted.
The function block below can perform all of its features better when designed as a hybrid
function block with both Enable and Execute inputs. When the block is Enabled, the code
that monitors axis motion and looks for expected registration marks at specific intervals is
always running. Motion takes place when Execute goes high. Notice the block provides both
Valid AND Done outputs.

Feed To_Length_1

Feed To_Length
Axie—1- AXIS —————— Axisp—Axis
Trigge rlete— TriggeData Trigge Data—TriggerData
Enab le Vald p—FTLvalid s
0% iactve [startHomeLatch L FTLDone |
|1 || ' Execute Done 'S |
HomeData.Approach Distancelimit—{ DefaultDistance Busy F—FTLBusy
FTLBusy
HomeData.Offset—{ Distance AfterlatcdCommandAborted f—FTLAborted
HomeData.Approach Ve baty— Velocity ActualSize -+
FTLError
HomeData.AccDec— Acceleration LatchPosition f—¢
HomeData.AccDec— Deceleration JimitedComre ction f—=
FTLAD orted
L— o+ Jerk Missed Latch
o MaxCore ction Error f—FTLErmror e
+— SensorMinimurm ErrorlD f—FTLErrorlD
i FTLMissed
+— SensorMaximum LatchError |
et
o+ Misse dLatch Limit |

Figure 31: Function Block variant incorporating both Enable and Execute models.

Doc#: AN.MWIEC.01 February 23, 2014 Page 27 of 31

YASKAWA

Subject: Application Note

Product: MPiec Series Controllers

Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Recommended Interlocks

Make use of the status outputs of PLCopen function blocks by including them in the interlock logic
This will ensure that the expected logic flow is occurring, and that in the
event of an error, debugging is made easier because the function block which caused an error will be

which executes the function.

reporting the ErrorID. Avoid pulsing the Execute input for one scan using an R_TRIG function.
error occurs, the error will only be reported for one scan.

If an

Unless specific error trapping techniques are

used, visual observation of the program will prove difficult to determine the source of the problem.

This logic is useful when calling sub functions within the function block you are creating, and is also a
good method to apply when referencing the completed function block from other code.

Initiate execution, OK to pulse

\

005 ' - Avis—1- Axis Axisd—Axis
Adive StartBackOff StartPulse
| 1} - 11 . — Execute Done |— <2
- LimiBackOffDirection—{ Distance Busy |—BackDffBusy
BackOffBusy .
. 1} - HomeData.ApproachVelocty— Velocty Active F—BackDffActive
HomeData. AccDec— Acceleration CommandAborted F—BadOffAborted
BadkOffError
* 1 | * HomeData.AccDec—{ Deceleration Error F—BackOffError
o Jerk BrorlD p—BackOffErmrorlD
BackOffAborted
L ot erMode# Aborting—{ BufferMode
Function block outputs to keep the block’s outputs live while running or error condition
MC_StepRe fPulse_3
006 Axs—t Axs ——————————— Axst—Axs
IActive StartPulse StartOffset
1 | -+ | | - — Execute Done | <2
PuseBusy PulseDrection—{ Drection Busy F—FulseBusy
— HomeData. CreepVelocty—| Velocty Active |—PulseActive
PuseError 1 SetPostion CommandAborted -—Puk eAborted
* 1| HomeData, TorqueLimt—{ Torquelimi Error }—PulseError
PulseAborted HomeData. CreepTimeLimt—] TimeLlimk ErorlD F—PulseErrorID
' | HomeData. CreepDistancelmt—{ Distancelimit
MC_BufferMode #Abortng— BufferMode

MC_MoveRelative_1

Figure 32: Recommended interlocks to improve debugging capabilities.

Doc#: AN.MWIEC.01 February 23, 2014 Page 28 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Summary

The techniques described here are just one way to create function blocks that conform to the PLCopen
specification. There are many ways to achieve the same results. Stick with a working code pattern to
simplify debugging. When code is arranged in a similar structure from function block to function block,
the time required to become familiar with the logic is reduced along with troubleshooting effort. Don’t
underestimate the value provided by the PLCopen specification; use it for increased efficiency in
automation.

Doc#: AN.MWIEC.01 February 23, 2014 Page 29 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Appendix A: Logic Analyzer traces

Use a recording feature provided by the IEC 61131 software to confirm proper behavior. Visually
testing in debug mode is not enough to confirm that every output is behaving correctly scan by scan.

Legic Analyzer

~ Output pattern when there is an immediate error < |

3 _ Execute goes high on scan 5 Execute goes low on scan 96 -

H HomeExe - ...
=
FS
|

2z _ iActive goes high on scan 5 iActive goes low on scan 96 -

liActive - Me.

065 Busy never goes high

B Busy - Med...
J

ﬁ Done never goes high
E
p__t
CommandAborted never goes high
e
103
= 06 _ Error goes high on scan 5 because the AXIS_REF is not defined. It
3 Uz remains high until Execute goes low (same scan as Execute) - |
N
= u.s::f _ Start Limit is pulsed on the same scan that Execute goes high.
2 04 The remaining sequence bits never go high because of the error
= 003

[Samples] 13

& HomeExe - MedTsk.Main : 0.000]
OiActive - MedTsk.Main.Home_LS_Pulse_1 : 0.000
< Busy - MedTsk MainHome_LS_Pulse_1 : 0.000]

5

2 Done - MedTsk_Main Hume LS Pulse 1 :
CommandAborted - MedTsk_Main.Home_LS_Pulse_1 : £0.000
E X Eror - Med Tsk Main.Home_LS_Pulse_ 1 000]

a I
2 063 StartLimit - Med Tsk Main Home_LS_Fuise_1 £0.000)
= 04 & StartBackOff - MedTsk Main Home_LS_Pulse_1 0.000
= 0.2 @ StartPulse - Med Tsk Main.Home_LS_Pulse_1 :0.000
s _ 00 StartOffset - MedTsk Main.Home_LS_Pulse_1 0.000)
1.03

;0.8

L
=} 0.4

= 023
@)
23 T T T T T T T T T T T T T T T T T T T
0 10 20 0 40 50 60 70 80 90 100
Samples

4 » \Cmﬁguraﬁon.kesoulce/

Doc#: AN.MWIEC.01 February 23, 2014 Page 30 of 31

YASKAWA

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Logic Analyzer

Qutput pattern when Execute goes low before normal completion

i

7

- Execute goes high on scan 5 Execute goes low on scan 156 ‘

W HomeExe - ...
=
it

?Il\
|

T
2 043 _ iActive goes high on scan 5 iActive goes low on scan 217 -
5_ood
104
2 063)
EF; 043 — Busy goes high on scan 5 Busy goes low on scan 215 -
e 00 | L

i Done pulses on scan 216 -
g
[=]
E_0
CommandAborted never goes high

i

. 10
B 083
E; gf} Error never goes high

S E
5 02
r_ 00

T

E et s [Samples] 55.0|
£ 063 _ Sequence bit ‘StartLimit’ is puI?ed on the & FomeEre MeaTa
2 047 samescan that Execute goes high OiActive - Med Tsk.Main Home_LS_Pulse_1

= 3 <> Busy - MedTsk.Main.Home_LS_Pulse_1
& 003 © Done - MedTsk. Main.Home_LS_Puise_1

]

Lyl byl

CommandAborted - MedTsk Main.Home _LS_Pulse_1 :

X Ervor - MedTsk.Main.Home_LS_Pulse_1 :

% StartLimit - Med Tsk Main Home_LS_Fulse_1

- Sequence bit ‘StartBackOff’ is pulsed & StartBackOff - MedTsk Main Home _LS_Pulse_1
9 P @ StartPulse - MedTsk Main. Home_LS_Pulse_1

4 StartOffset - MedTsk.Main.Home_LS_Pulse_1

E5EEEEEEEE

- Sequence bit ‘StartPulse’ is pulsed
% 063 it ;
L _ Sequence bit ‘StartOffset’ is pulsed
2 - T
50 00 150 200
Samples

4]/ r \Cnnﬁgnral.ion:ﬂe!ource,/'

Note: iActive stays high for an additional scan to clear all status data for the next time the function block
is executed.

Doc#: AN.MWIEC.01 February 23, 2014 Page 31 of 31

	Introduction
	Benefits
	Getting Started
	Function Block Models
	Input Behavior
	Output Behavior
	Execute Function Block Model
	Trigger Statements
	LD Format
	ST Format

	RETURN statement
	LD Format
	ST Format

	Setting the iActive Flag
	LD Format
	ST Format

	Initialization
	LD Format
	ST Format

	Main Code Body
	LD Format
	ST Format

	Motion Blocks
	Frozen code
	ST Solutions

	Error Processing
	Latching Function Block Errors
	LD Format
	ST Format

	CommandAborted Output
	LD Format
	ST Format

	Busy Output
	Special Case
	LD Format
	ST Format

	Done Output
	Special case
	LD Format
	ST Format

	Enable Function Block Model
	Trigger Statements
	RETURN statement
	iActive Flag
	Initialization
	Main Code Body
	Motion Function Blocks
	Error Processing
	LD Format
	ST Format

	Valid Output
	LD Format
	ST Format

	Execute / Enable Model Variants
	Variant #1:
	Variant #2:

	Recommended Interlocks
	Summary
	Appendix A: Logic Analyzer traces

